B - TAG Review October 2 - 4, 2001

Transport Beam Instrumentation: A First Look

LANSCE-1 Beam Diagnostic Instrumentation Team Beam Transport Team and J. Douglas Gilpatrick

Agenda

- Define the primary measurements in the transport
- **Position**
- Transverse profiles
- **Charge and Current**
- Loss
- Specialty measurements for tuning
- measurement Discuss a suggested placement guidance for each
- measurement Discuss choices we are investigating for each
- Suggest an initial set of specifications, as guided by the transport physics
- Provide a first cut at the numbers of each measurement
- **List TBD items**

Philosophy Transport Beam Position Measurements: Design

- Placement Guidance
- Periodic lattice (dual-axis beam position monitor)
- Pair per 3.5 FODO lattice periods (see below)
- Downstream from beam splitter for assessment of centering split beams

Beam Position Monitors (BPMs) under investigation

- Resistive wall current monitor
- Disadvantages: physically larger, requires ferrite

Advantages: non-differentiating, no RF vacuum feedthroughs

- Micro-stripline Sensor/Button (Capacitive) sensor
- Difficult to practically manufacture electrode longer than 20-ns bunch length
- Advantages: physically short, no ferrite
- Disadvantages: Doublet signal w/ small S:N, multiple RF vacuum feedthroughs

Initial Beam Position Specifications as Guided by Transport Physics

- Precision: ~0.1% of half aperture
- Accuracy: ~1% of half aperture
- Apertures (Beam Pipe ID): 2 in, 3 in, and 4 in
- Rise Time: ~20 ns (implies 18 MHz BW)
- For most measurements: average beam position for a single
- Dynamic Range: 1.5X10¹² to 5X10⁸ protons per bunch
- Single synchrotron bunch partially filled from the linac/booster
- 3 Splits likely extends dynamic range to 1.5X10¹² to 1X10⁸
- Position Acquisition Time: ≤ 50 ns
- Nominal synchrotron output: 1-20 bunches each separated by 200 ns
- posted to archiver and operator screens: < 1 s Time difference between 20-bunch "shot" and positions

Beam Profile Measurements: Design Philosophy

Placement Guidance

- Periodic lattice after each splitter
- Sufficient profile measurements to characterize the beam match to the next optics section
- 1 per each FODO lattice section for troubleshooting issues
- Beam splitters
- Before PM Septum, DC Septum #1 and DC Septum #2
- investigation Possible profile measurement choices under
- Harps (multi-wires, secondary electrons)
- Advantages: radiation tolerant, robust, detection conceptually simpler
- Disadvantages: provides only projections, can have coupling between wires, spatial resolution limitations (0.25-mm minimum wire spacing)
- Viewscreens w/ video imaging systems (Detected light: several choices)
- Advantages: directly measures full 2-D information of the beam
- Disadvantages: detectors more radiation sensitive (rad. hard cameras?), beam heating issues

Initial Beam Profile Specifications as Guided by Transport Philosophy

- Spatial and Charge Precision: \sim 20% rms width and \sim 2% of full scale charge
- Spatial and Charge Accuracy: ~50% rms width and 50% of FS Charge (relative information more important)
- Rise Time: ~20 ns (implies 18 MHz BW)
- Need only to collect profile integrated over a single pulse
- Dynamic Range: ~±3 rms widths
- Measurement Region: ±75% of beam pipe half aperture
- Profile Thresholds: ~ 1% of the distribution peak
- Overall repetition rate: 0.04 Hz (a group of 20 bunches every 25 s)
- Profile Acquisition Time: typically < 1 s (in some cases ≤ 50 ns)
- Most profile measurements need only provide a single distribution for a group of 20 bunches
- bunch profiles A few profile measurements in transport will need to detect individual

Philosophy Beam Charge and Current Measurements: Design

Placement Guidance

- Periodic lattice: bends and straight sections
- 1 per each FODO lattice section for commissioning and operation
- Beam splitters (~5)
- 1 in front of splitter, 1per splitter leg after DC magnetic septum #2 and 1 per splitter leg at end
- Current and Charge measurement choices
- Fast current/charge transformers that integrate the bunch charge (Typical Bergoz FCT)
- Advantages: non-interceptive, off-the-shelf product, reasonably low cost, sensitive, radiation tolerant and robust
- Disadvantages: none for this application
- Additionally, BPM can provide a similar charge/current measurement
- Advantages: non-interceptive, reasonably low cost, sensitive, very radiation tolerant and robust
- Disadvantages: none for this application

Initial Beam Charge and Current Specifications as Guided By Transport Physics

- Precision: ~0.25% of full scale current
- Accuracy: ~0.5% of full scale current
- Rise Time: \sim 1 ns (implies 350 MHz BW)
- Some locations: differentiate signal for individual bunch snapes
- For most locations: average beam charge/current for a single pulse sufficient
- Dynamic Range: 1.5X10¹² to 5X10⁸ Protons per bunch
- Single synchrotron bunch partially filled from the linac/booster
- Current Acquisition Time: ≤ 50 ns
- 200 ns Nominal synchrotron output: 1-20 bunches each separated by
- posted to archiver and operator screens: < 1 s Time difference between 20-bunch "group" and currents

Beam Loss Measurements: Design Philosophy

- during operation) Placement Guidance (tuning and troubleshooting
- Periodic lattice in each bend
- One per 2 dipoles (beam is bent 7.5 deg per 20 m long cell)
- Periodic lattice in each straight section
- One per 2 FODO lattice periods
- Beam splitters (~ 10)
- One at Electrostatic Splitter, Pulsed Magnet Septum, DC Magnet Septum #1 and DC Magnet Septum #2, and
- One near each scraper
- Loss measurement under investigation
- Ion Chambers
- Advantages: wide dynamic range, does not saturate, robust
- Disadvantages: not as sensitive as other choices, relatively slow
- Diodes w/ counting type detectors
- Advantages: sensitive, fast, low cost
- Disadvantages: can saturate
- Others? (Scintillator + PMT, cable-based loss detector, or other solid state detector)

Initial Beam Loss Specifications as Guided by Transport Physics

- Precision: ~10⁷ lost protons
- Accuracy: within X10 of actual loss (relative information more important)
- Rise Time: ~20 ns (implies 18 MHz BW)
- Locate beam loss to somewhere between adjacent loss monitors
- Dynamic Range: 1X10¹¹ to 1X10⁷ Protons per bunch
- Single synchrotron bunch partially filled from the linac/booster
- Loss Acquisition Time: ≤ 50 ns
- Nominal synchrotron output: 1-20 bunches each separated by 200 ns
- posted to archiver and operator screens: < 1 s Time difference between 20-bunch "shot" and losses

Measurements for Special Beam-Related Tuning Parameters

Septum beam current

- Measurement of approximate centering of split beam
- the bulk of the distribution reaches the septum Wires on both sides of septum provide information of where
- Detect secondary emission resulting from 50 GeV protons intercepting the biased wire

Scraper beam current

- front of septum Measurement of number of protons intercepting scrapers in
- Detect secondary emission resulting from 50 GeV protons intercepting the biased scraper

Quadrupole Moment

Non-interceptive monitor provides additional split-beam separation information between the pulsed magnet and DC magnet splitters

operators with beam tuning information. Beam instrumentation in the splitter region provide

- Splitter region must have sufficient beam instruments to
- Split beam pulses in half to within <1%
- Position beam for next periodic lattice
- Match beam for next periodic lattice
- Scrape off halo from distribution edges of split beams
- Monitor placement and amount of separation of split beams

in the Transport: Initial Estimate **Number of Measurement and General Location**

Total	Middle Straight Section #4 (4, 1 triplett, 2 dipoles, 2 H/V steerers)	Outer Bend Section #4 (8, 8 dipoles, 8 quads, 2 steerer)	Straight Section #3 (8; 4 quads & 2 steerers)	Bend #5 (8; 4 dipoles &quads, 2 steerers)	Splitters #3 (4, 2 Matching & 12 single axis steerers)	Bend #4 (4; 18 dipoles &quads, 8 steerers)	Straight Section #2 1 (4; 7 quads & 4 steerers)	Bend #3 (4; 12 dipoles &quads, 4 steerers)	Splitter #2 (2, Matching & 6 single axis steerers)	Bend #2 (2; 30 dipoles &quads, 16 steerers)	Straight Section #1 (2; 39 quads & 20 steerers)	Bend #1 (2; 18 dipoles &quads, 8 steerers)	Splitter #1 (Matching & 6 single axis steerers)	
79	4	8	8	0	36	0	4	0	10	0	2	2	5	Current & Charge
310	8	32	8	16	80	36	8	24	20	30	20	18	10	Loss
33	0	0	0	0	24	0	0	0	6	0	0	0	3	Septum Current
176	0	0	0	0	128	0	0	0	32	0	0	0	16	Scrapper Current
200	8	16	16	0	60	16	8	8	16	16	20	8	8	Position
124	4	8	0	32	32	4	4	16	8	2	2	8	4	Trans. Profile
11	0	0	0	0	8	0	0	0	2	0	0	0	1	Quad Moment

Transport Beam Measurement TBDs

- it's related requirements Commissioning plan and how the instrumentation answer
- Complete measurement choice selection
- Integrated control system interface (hardware and software)
- Timing system interface
- structures, etc.) Mechanical beamline interfaces (flanges, support
- Vacuum constraints/requirements
- environment, etc.) Facility/building interface issues (cable trays/conduits,
- Beamline device alignment
- Grounding of beamline devices and electronics
- Cable plant
- Others?

Summary

- We have a start on the baseline for the AHF transport beam instrumentation and we are refining it.
- We have identified what beam parameters are important to measure
- Their general location
- And their approximate numbers
- We have a starting set of requirements for each measurement.

